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Knotted Wave Dislocation with the Hopf Invariant
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We study the wave dislocations with an induced gauge potential. The topological current
characterized the wave dislocations is constructed with the dual of Abelian gauge field.
And the topological charges and locations of the wave dislocations are determined by
the φ-mapping topological current theory. Furthermore, it is shown that the knotted
wave dislocations can be described with a Hopf invariant in the wave field. At last we
discussed the evolution of the knotted wave dislocations.
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1. INTRODUCTION

Wave dislocations (phase singularities) have drawn great interest because they
are of importance for understanding fundamental physics and have many important
applications. They appear in different areas of both classical and quantum physics,
including condensed matter, fluid dynamics, superconductivity, acoustic and optics
(Berry, 1981; Bialynicki-Birula et al., 2000; Dennis, 2001; Nye and Berry, 1974).
Besides their fundamental far-reaching importance, wave front dislocations have
potential practical applications in fields as diverse as oceangraphy, information
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processing, or biology (Ashkin et al., 1987; He et al., 1995; Luther-Davies et al.,
1997; Padgett and Allen, 1997; Rozas et al., 1997). Berry and coauthors (Berry,
1976; Berry and Hannay, 1977; Berry et al., 1979; Berry and Wright, 1980; Nye,
1979, 1981, 1983, 1998) considered the scalar wave equation and proved the
existence of wave dislocations by exhibiting a number of special solutions of the
scalar wave equation that have the dislocation properties. Wave front dislocations
appear as a phase singularity where the phase of the wave is undefined thus
its amplitude must vanish. The order of the singularity multiplied by its sign is
referred to as the topological charge of the dislocation.

From the viewpoint of the Fu et al. (2000) and Duan et al. (2002), the vortex
lines can be studied with the Abelian gauge field. The vortex current characterized
with the winding number is the dual of the Abelian gauge field strength. In the
different systems the Abelian gauge potential emerge with the different form, e.g.,
electromagnetic gauge potential in the superconductor (Duan et al., 2002) and the
superfluid velocity vs = (h̄/m4)∇S in the superfluid 4He (Thouless, 1998). For
the optical field, the “induced Abelian gauge potential” Aµ (Bohm et al., 1991;
Holz, 1991, 1992; Hsiang and Lee, 2001) can be constructed with the complex
scalar field φ(x). Thereby we will discuss the wave dislocations from the view of
the gauge field.

On the other hand, it is long time to know that the dislocations can form the
closed lines (Berry, 1981; Nye and Berry, 1974), which bring us to consider the
knotted dislocation lines. A recent study of the knotted wave dislocations governed
by Helmholtz equations revealed the universal topological features of dislocation
loops. The exact solutions of the wave equation were constructed to represent
these closed dislocation lines (Berry and Dennis, 2001a,b).

In this paper, we study the topological properties of dislocation lines from
the view of gauge field similar to the field description of dislocations in the
crystals (Duan and Zhang, 1990, 1991a,b). By virtue of the well-known “induced
gauge potential” the topological current of complex scalar wave is constructed
to represent dislocation lines that are straight or curved, or form closed knots.
Furthermore, the knotted wave dislocations are discussed with the Hopf invariant
in terms of the φ-mapping topological current theory. With the decomposition of
U (1) gauge potential, we concluded that the Hopf invariant is related to the linking
and self-linking number of the knotted dislocation lines.

This paper is arranged as follows. In the Section 2, we give the inner structure
of wave dislocation lines with the wave field φ(x) from the view of Abelian gauge
field. Then the knotted dislocation lines are discussed with the Hopf invariant
and the φ-mapping topological current theory in the Section 3. Furthermore, in
terms of the bifurcation theory of topological current we studied the evolution
of knotted dislocation lines in Section 4. At last, our conclusion is presented in
Section 5.
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2. WAVE DISLOCATION WITH GAUGE FIELD

The field including wave dislocations is described by the complex scalar
wave solutions φ(r) of the Helmholtz equation

∇2φ(r) + φ(r) = 0.

Usually the dislocations can be presented by solving the above wave equation. In
this paper, we try to discuss the wave dislocation from the viewpoint of gauge field
or pure geometry language since the wave dislocations are topological objects on
wave-front surfaces.

Let us focus on the complex scalar wave φ(r) = ρ(r)n(r) (φ∗φ = ρ2) asso-
ciated with the dislocations. The well-known “induced gauge potential” can be
constructed with (Bohm et al., 1991; Holz, 1991, 1992; Hsiang and Lee, 2001)

Ai = 1

i
〈n|∂in〉, i = 1, 2, 3. (1)

Since wave fields admit a U (1) group of transformations

n(r) → eiθn(r),

we introduce a “gauge transformation” on Ai,

Ai → Ai + ∂iθ.

One can find that the above gauge potential has the same form as the decomposed
U (1) connection (Duan et al., 1994, 2002; Fu et al., 2000), which is very useful to
discuss the vortices of Bose–Einstein condensate (Duan et al., 2003) and cosmic
strings in the early university (Duan et al., 1997; Zhang et al., 2003).

The topological current of the wave fields φ(r) = ρ(r)(n1(r) + in2(r)) is
proposed with the gauge field Fij = ∂iAj − ∂jAi :

J i = 1

4π
εijkFij = 1

2π
εijkεab∂jn

a∂kn
b, (2)

then one can obtain (Duan and Ge, 1979; Duan et al., 1998)

J i = δ( �φ)Di

(
φ

x

)
, (3)

where Di(φ/x) = 1
2εijkεab∂jφ

a∂kφ
b is the Jacobian vector and �φ = (φ1, φ2) can

be regarded as a two-dimensional vector field. It is obvious that the dislocation lines
always appear in the zeroes of the �φ(x), so it is necessary to study the zero points
of �φ(x) to determine the non-zero solutions of J i. One can find that the general
solutions of �φ(x, y, z) = 0 can be expressed as x = x1

l (s), y = y2
l (s) , z = z3

l (s)
(l = 1, . . . , N ) under the regular condition Di(φ/x) �= 0, which represent the
world surfaces of N isolated singular strings Ll with string parameter s. These
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singular string solutions are just the dislocation lines and the location of lth
dislocation lines is determined by the lth zero point �rl(s).

With δ-function theory (Schouten, 1951) and φ-mapping topological current
theory, one can prove that (Duan and Ge, 1979; Duan et al., 1998)

J i =
N∑

l=1

βlηl

∫
Ll

dxi

ds
δ3(�r − �rl(s))ds (4)

where ηl = sgnD(φ/u)�xl
= ±1 is the Brouwer degree of φ-mapping, βl is the

Hopf index of φ-mapping (Milnor, 1966), which means that when �r covers the
neighborhood of the zero point �rl(s) once, the field �φ(x) covers the corresponding
region in φ-space βl times. Equation (4) gives the topological structure of disloca-
tion lines. Let 
l is the lth planer element transversal to Ll , then the topological
charge of lth dislocation line Ll is

Ql =
∫


l

J idσi = Wl, (5)

where Wl = βlηl is the winding number of �φ around Ll . Furthermore, the evo-
lution of wave dislocation lines, for example production, annihilation, splitting
and emerging etc, can be discussed with this topological current (Duan et al.,
1999a,b). Here one can notice that the sign of topological charge Ql is determined
with Brouwer degree ηl , which is consistent with the definition of Freund (Freund,
2000a,b; Freund and Kessler, 2001).

3. KNOTTED WAVE DISLOCATION WITH THE HOPF INVARIANT

As a kind of curves in space, it is natural to consider the closed and knotted
wave dislocation lines in the wave field (Berry, 1981; Berry and Dennis, 2001a,b;
Nye and Berry, 1974). Berry et al. constructed the exact solutions of the Helmholtz
equation to represent the knotted dislocation lines (Berry and Dennis, 2001a,b).
In this paper, we try to study the knotted dislocation lines with the Hopf invariant
(Duan et al., 2003; Kundu and Rybakov, 1982; Moffatt, 1969; Moffatt and Ricca,
1992; Poenaru and Toulouse, 1977; Winfree and Strogatz, 1983a,b,c) instead of
solving the concrete Helmholtz equation. For a closed three-manifold M the Hopf
invariant H is given by

H = 1

2π

∫
M

εijkAi∂jAk. (6)

With the topological structure of the dislocation lines (4) we find that

H =
∫

AiJ
id3x =

N∑
l=1

Wl

∫
Ll

Aidxi . (7)
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It can be seen that when these N dislocation lines are N closed curves, i.e., a
family of N knots γl (l = 1, . . . , N), (7) means that Hopf invariant describes the
knotted dislocations and is a topological invariant (Eguchi et al., 1980).

In the following we investigate the integral (7) in detail. One can find that the
Eq. (7) can be expressed as

H =
N∑

k, l=1

WkWl

∮
γk

∮
γl

∂iAjdxidyj ,

where �x and �y are two points on knots γk and γl, respectively. There are three parts
for the above sum: �x = �y and k = l (same knot); �x �= �y and k = l; �x �= �y and k �= l

(different knots). Defining a 3-dimensional unit vector �m = (�y − �x)/||�y − �x||,
which form a sphere S2, then one obtain a 2-dimensional vector field �e with
2εab∂ie

a∂j e
b = �m · (∂i �m × ∂j �m) (Mermin and Ho, 1976; Morandi, 1992). The

induced gauge potential Ai can be decomposed with this 2-dimensional unit
vector (Duan et al., 1994, 2002; Fu et al., 2000)

Ai = εabe
a∂ie

b. (a, b = 1, 2)

Using above expression, the Hopf invariant can be expressed as

H =
N∑

k=1

W 2
k

∮
γk

εabe
a∂ie

bdxi +
N∑

k=1 (�x �=�y)

1

2
W 2

k

∮
γk

∮
γk

�m∗(dS)

+
N∑

k,l=1 (k �=l)

1

2
WkWl

∮
γk

∮
γl

�m∗(dS), (8)

where �m∗(dS) = �m · (∂i �m × ∂j �m)dxi ∧ dyj (�x �= �y) denotes the pull-back of the
S2 surface element.

In the following we will investigate the three terms in the r.h.s of Eq. (8) in
detail. The first term of (8) is just related to the twisting number T w(γk) of γk

1

2π

∮
γk

εabe
a∂ie

bdxi = 1

2π

∮
γk

( �T × �V ) · d �V = T w(γk), (9)

where �T is the unit tangent vector of knot γk at �x ( �m = �T when �x = �y), and �V is
defined as ea = εabV b ( �V ⊥ �T , �e = �T × �V ). For the second term, one can prove
that it is related to the writhing number Wr(γk) of γk (Calini and Ivey, 1996; Pohl,
1968; Rolfsen, 1976)

Wr(γk) = 1

4π

∮
γk

∮
γk

�m∗(dS). (10)
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In terms of the Calugareanu formula (Calini and Ivey, 1996; Pohl, 1968; Rolfsen,
1976)

SL(γk) = Wr(γk) + T w(γk), (11)

we see that the first and the second terms of (8) just compose the self-linking
numbers of knots. Furthermore, for the third term, one can prove

1

4π

∮
γk

∮
γl

�m∗(dS) = 1

4π
εijk

∮
γk

dxi

∮
γl

dyj (xk − yk)

‖�x − �y‖3 = Lk(γk, γl) (k �= l),

(12)
where Lk(γk, γl) is the Gauss linking number between γk and γl , (Witten, 1989;
Polyakov, 1988). Therefore, from (10), (9), (11) and (12) we obtain the important
result:

H = 2π

⎡
⎣ N∑

k=1

W 2
k SL(γk) +

N∑
k,l=1 (k �=l)

WkWlLk(γk, γl)

⎤
⎦ . (13)

This precise expression just reveals the relationship between H and the self-
linking and the linking numbers of the knots family. Since the self-linking and
the linking numbers are both the invariant characteristic numbers of the knots
family in topology, H is an important invariant required to describe the knotted
dislocation lines in the wave field.

4. EVOLUTION OF KNOTTED DISLOCATION LINES

The evolution of wave dislocation is of considerable interest. In the above
section, we did not consider the motion of dislocation line L, and only discussed the
space structure of dislocation lines in the three-dimensional space. In this section,
we will investigate the evolution of the dislocation lines in (3 + 1)-dimensional
spacetime with coordinates x1 = x, x2 = y, x3 = z, and x0 = t . Here we fix the
x3 coordinate for simplicity and take the XOY plane as the cross section, so the
intersection line between the L’s evolution surface and the cross section is just
the motion curve of L (Duan and Zhang, 1999). In this case the 2-dimensional
topological current have the form with the coordinate t instead of z

J i = δ2(φ)Di(φ/x), (i = 1, 2)

and the density of dislocation lines

ρ = δ2(φ)D0(φ/x), (14)

where D1(φ/x) = εab∂2φ
a∂0φ

b, D2(φ/x) = εab∂0φ
a∂1φ

b and D0(φ/x) =
εab∂1φ

a∂2φ
b. From Eq. (14) the line density of line defects on the cross sec-

tion do not vanish only at the zero points of vector order parameter �φ(x, y, t),
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i.e.,

φ1(x, y, t) = 0, φ2(x, y, t) = 0, (15)

which determine the positions of line defects. If the Jacobian determinant
D0(φ/x) �= 0, the solutions of Eq. (15) are expressed as

x = xl(t), y = yl(t), l = 1, 2, . . . , N (16)

which represent the motion curves of N zero point �xl(t) on the cross section, and
which show them moving in (2 + 1)-dimensional space-time. In our previous work
(Duan and Zhang, 1999) it has been pointed out that, during the evolution of line
defects, when the regular condition D0(φ/x) �= 0 fails, the branch processes (i.e.
the splitting, mergence and intersection) will occur; and in these branch processes,
the sum of the topological charges of final line defect(s) Wf is equal to that of the
initial line defect(s) Wi at the bifurcation point.

In following we will show that when the branch processes of knotlike dislo-
cation lines occur, the topological invariant H of (8) (i.e. (13)) is preserved:

(i) The splitting case. We will consider one knot γ split into two knots γ1 and
γ2 which are of the same self-linking number as γ (SL(γ ) = SL(γ1) = SL(γ2)),
and will compare the two numbers Hγ and Hγ1+γ2 , where Hγ is the contribution
of γ to H before splitting, and Hγ1+γ2 is the total contribution of γ1 and γ2 to
H after splitting. Firstly, from the above text we have Wγ = Wγ1 + Wγ2 in the
splitting process. Secondly, on the one hand, noticing that in the neighborhood
of bifurcation point, γ1 and γ2 are infinitesimally displaced from each other; on
the other hand, for a knot γ its self-linking number SL(γ ) is defined as SL(γ ) =
Lk(γ, γV ), where γV is another knot obtained by infinitesimally displacing γ in
the normal direction �V (Witten, 1989). Therefore SL(γ ) = SL(γ1) = SL(γ2) =
Lk(γ1, γ2) = Lk(γ2, γ1), and Lk(γ, γ ′

k) = Lk(γ1, γ ′
k) = Lk(γ2, γ ′

k) (here γ ′
k

denotes another arbitrary knot in the family (γ ′
k �= γ, γ ′

k �= γ1,2)). Then, thirdly,
we can compare Hγ and Hγ1+γ2 as: before splitting, from (13) we have

Hγ = 2π

[
W 2

γ SL(γ ) +
N∑

k=1 (γ ′
k �=γ )

2Wγ Wγ ′
k
Lk(γ, γ ′

k)

]
, (17)

where Lk(γ, γ ′
k) = Lk(γ ′

k, γ ); after splitting,

Hγ1+γ2 = 2π

[
W 2

γ1
SL(γ1) + W 2

γ2
SL(γ2) + 2Wγ1Wγ2Lk(γ1, γ2)

+
N∑

k=1 (γ ′
k �=γ1,2)

2Wγ1Wγ ′
k
Lk(γ1, γ

′
k) +

N∑
k=1 (γ ′

k �=γ1,2)

2Wγ2Wγ ′
k
Lk(γ2, γ

′
k)

]
.

(18)



1760 Zhang, Li, Wu, and Duan

Comparing (17) and (18), we just have

Hγ = Hγ1+γ2 . (19)

This means that in the splitting process H is preserved.
(ii) The mergence case. We consider two knots γ1 and γ2, which are of the

same self-linking number, merge into one knot γ which is of the same self-linking
number as γ1 and γ2. This is obviously the inverse process of the above splitting
case, therefore we have

Hγ1+γ2 = Hγ . (20)

(iii) The intersection case. This case is related to the collision of two knots
(Niemi, 2000). We consider two knots γ1 and γ2, which are of the same self-
linking number, meet, and then depart as other two knots γ3 and γ4 which are of
the same self-linking number as γ1 and γ2. This process can be identified to two
sub-processes: γ1 and γ2 merge into one knot γ , and then γ split into γ3 and γ4.

Thus from the above two cases (ii) and (i) we have

Hγ1+γ2 = Hγ3+γ4 . (21)

Therefore we obtain the result that, in the branch processes during the evo-
lution of knotlike dislocations (i.e., the splitting, mergence and intersection), the
topological invariant H is preserved.

5. CONCLUSION

In this paper, we investigate the topological properties of wave dislocation
lines in terms of the φ-mapping topological current theory. First, the dislocation
lines are studied with the “induced gauge field” and it is shown that the dislocation
lines originated from the singularities of wave field. The topological structure of
the wave dislocation lines is obtained based on the δ-function theory. Here we
want to point out that these topological structures can all be characterized by the
φ-mapping topological numbers–Hopf indices and Brouwer degrees, and their
locations can be rigorously determined by φ-mapping topological current theory.
Secondly, with the help of Hopf invariant we discussed the knotted dislocations
and show that the linking and self-linking number of the knotted dislocation is just
the Hopf invariant. At last, it is shown that the topological number H is preserved
in the branch processes (splitting, mergence and intersection) during the evolution
of these knotted dislocation lines.
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